HIGH CAPACITY MICROPILE GROUPS FOR THE CANNON PLACE REDEVELOPMENT IN LONDON

Mr Jim Fraser, Foggo Associates

Mr Tony Taylor, Foggo Associates

Dr Hugh St John, Geotechnical

Consulting Group

Mr Jim Martin, Byland Eng.

ISM International Workshop on Micropiles, London, May 10-13, 2009

Agenda

- 1. Introduction Tony Taylor
- 2. Site Description and Geology Tony Taylor
- 3. Design Philosophy Tony Taylor
- 4. Preliminary Test Piles Jim Martin
- 5. Site Works Jim Martin
- 6. Conclusions Jim Martin

1) Introduction

- Location
- Originally constructed in 1868
- Redevelopment in the 1960's
- Brick vaulted viaduct retained

- PresentRedevelopment
- Roman Archeology –
 Scheduled Ancient
 Monument
- Reused & New Foundations

Initial Foundation Scheme

Reused Underreamed Foundations
New Minipile Foundation Groups

Column
loadings
range from
9 to 15MN

Site Constraints

- Low Headroom 2.7m at Arch Spring
- Existing Arch Viaduct Walls and Foundations
- Working Station Above
- Ancient Scheduled Monument Remains
- 1967 Piled Foundations

2) Geology

- Made Ground
- River Terrace
 Gravels
- London Clay (scour channels)
- Lambeth Group

3) Design Philosophy

- Original proposal was hand dug caissons
- Health & safety concerns
- Micropile contractors approached for ideas
- Micropile groups favoured option
- Standard piling tolerances not workable
- 300mm dia piles adopted as best suited to pile group geometry.
- Pile structural capacity important
- Pile spacing's set at 500mm i.e. 1.6D

3) Design Philosophy

- Pile group size determined by outer shear perimeter together with bearing over the enclosed base area
- Pile group capacity not greater than sum of individual piles
- Verticality to be better than 1:100 to maintain integrity of pile group geometry
- Settlement not to exceed 10mm to avoid damage to existing viaduct and rail operational issues
- Pile group plan shapes varied from initial circular to rectangular to reduce impact on archaeology and rail viaduct foundations
- Total pile construction depth not to exceed 30m to avoid extended daily construction periods

3) Design Philosophy

- Steel liners introduced to increase accuracy of position and verticality.
- Permanent liners enable pile installation adjacent to archaeology
- Pile group plan shapes varied from initial circular to rectangular to reduce impact on archaeology and rail viaduct foundations
- Preliminary tests imperative to ratify design assumptions and pile performance with adjacent piles.
- Full load testing of individual contract piles very difficult due to working constraints so dynamic tests undertaken.

Green Field Settlement along Section 2-2'

Green Field Settlement along Section 1-1'

Arches 1-1'

Distance from Grid Line A

Settlement Profiles along Sections 1-1 and 2-2

4) Preliminary Test Piles

- Required to confirm
 - Drilling & construction techniques
 - Verticality achievable
 - Calibration of dynamic tests (for working tests)
 - Group versus individual pile behaviour
 - Grout versus concrete behaviour and practicalities
 - Geotechnical design parameters

Excellent verticality of ~1 in 500 achieved

Advantages of Concrete	Disadvantages of Concrete	Advantages of Grout	Disadvantages of Grout
Fast	Reliant on concrete supplier	Mix as and when required	Slow
Cost effective	Difficult to obtain Can mix small small quantities quantities		Expensive
Good pile performance	Require areas for concrete mixer delivery and pump Small plant can be moved to minimise pumping distance		Noisy & dusty on site
	Inevitable debris left in base	Debris flushed out of base	

Advantages and Disadvantages of Concrete and Grout

Preliminary Test Pile Arrangement – max test load = 2,400kN

Static pile test Results – (Dynamic Tests showed good correlation up to 800kN)

Ultimate Pile
Capacity
defined as
30mm of pile
head
settlement

Pile Test No	Concrete / Grout	Group / Single	Ultimate Load from Test & Prediction, Q _{ult} (kN)	Back Calculated α- value
TP1	Concrete	Individual	2,700	0.592
TP2	Concrete	Group	1,900	0.405
TP3	Grout	Group	1,800	0.381
TP4	Grout	Individual	2,000	0.428
		Average concrete alpha α		0.499
		Average grout alpha α		0.405
		Average group alpha α		0.393
		Average overall alpha α		0.452

Discussion on Test Pile Results:

 Low adhesion factor due to progressive debonding (I/d>100) or smearing?

• High adhesion factor in single concrete pile due to installation of 26m deep central 63mm rebar **after**

concreting?

Adopted design parameters for main works

- Adhesion factor = 0.40
- $c_u = (80 + 5.13 z) \text{ kN/m}^2$, z = depth below +5.00 m OD
- Bearing Capacity Factor = 9.0
- FOS of 2.0

5) Site Works

- 190 micropiles installed during late 2008 at 2 to 3 /shift
- Excellent verticality's achieved
- Pumped concrete worked well

Target slump 185mm important (range 160 to 210mm)

6) Conclusions

- Micropile groups offer advantages over hand dug caissons for large column loads in restricted headroom
- Preliminary testing imperative on complex projects, including time to use results.
- Adhesion factor of 0.4 appropriate for long slender micropiles in London Clay
- Concrete can offer advantages over grout